

LA-UR-21-32037

Approved for public release; distribution is unlimited.

Title: Resonant ultrasound spectroscopy for anisotropic materials with

misaligned geometric and material axes.

Author(s): Beardslee, Luke Berny

Ulrich, Timothy James II Remellieux, Marcel

Intended for: Acoustic Society of America, 2021-11-29 (Seattle, Washington, United

States) Presentation

Issued: 2021-12-09

Resonant ultrasound spectroscopy for anisotropic materials with misaligned geometric and material axes.

Luke Beardslee Marcel Remillieux TJ Ulrich

Agenda

- 1. Standard method RUS inversion
- 2. FEM based RUS inversion method
- 3. Advanced RUS inversion method with Euler angles
- 4. Conclusion and future work

Standard RUS Inversion

- Constrained to parts of simple geometries
- Fast forward modeling i.e. Raleigh Ritz
- Several modes needed
- Limited to relatively simple materials

Finite Element Method (FEM) RUS Inversion

- Arbitrary shapes
- As built geometries (CMM Scan)
- Complex material properties with misaligned material axes.
- Mode shape matching

Advanced RUS Inversion Method with Euler angles

- Euler angle rotation (Z-X-Z)
- Off axis rotation due to majority alignment of granular material
- Global material rotation
- Large effect to mode shape
- Pressed Idoxuridine (IDOX)

Picture of IDOX sample

Comparison of Material Type Inversion

- Higher error than typical
- Importance of mode matching
- Importance of material selection

Data	Material Type	Mode 1	Mode 2	Mode 3	Mode 6	Mode 7	Inversion RMS Error
Measured	NA			(•	NA
Simulated	Isotropic	*	*		*	*	1.69%
Simulated	Transverse Isotropic	*	*	(e)			3.25%
Simulated	Transverse Isotropic Euler Rotation	*	*				1.57%

IDOX Spectra and Mode Matching

- Subset of all modes that can be matched
- Inversion is only knowledgeable of the frequencies and mode index
- Unable to modify index based on mode flipping and index order swapping

Results

Constant Free

Isotropic Elastic Constants

- $C_{11} = 2.35 GPa$
- $C_{44} = 1.03 \text{ Gpa}$
- Density = 1807 kg/m^3
- Total Error = 1.69%

Calculated Measured Error %

mode 1	25,154.58	24,920.0	0.94
mode 2	25,157.21	25,540.0	-1.5
mode 3	33,941.81	34,070.0	-0.38
mode 6	46,653.52	46,480.0	0.37
mode 7	46,658.95	48,250.0	-3.3

Transverse Isotropic Elastic Constants

- $C_{11} = 3.11 GPa$
- $C_{44} = .98 GPa$
- $C_{33} = 8.63 GPa$
- $C_{66} = 5.82 GPa$
- $C_{13} = 2.58 GPa$
- Density = 1807 kg/m^3
- Total Error = 3.25%

Calculated Measured Error %

mode 1	25,796.78	24,920.0	3.52	
mode 2	25,818.24	25,540.0	1.09	
mode 3	35,961.25	34,070.0	5.55	
mode 6	47,739.94	46,480.0	2.71	
mode 7	47.745.72	48.250.0	-1.05	

Transverse Isotropic with Euler Rotation Elastic Constants

- $C_{11} = 3.23 \text{ GPa}$
- $C_{44} = .96 GPa$
- $-C_{33} = 8.15 GPa$
- $C_{66} = 5.81 GPa$
- $-C_{13} = 2.98 \text{ Gpa}$
- Z-X-Z Rotation
 (22.51° 12.56° 53.68°)
- Density = 1807 kg/m^3
- Total Error = 1.57%

Calculated Measured Error %

mode 1	25,386.84	24,920.0	1.87	
mode 2	25,775.46	25,540.0	0.92	
mode 3	34,628.3	34,070.0	1.64	
mode 6	46,355.92	46,480.0	-0.27	
mode 7	47,154.35	48,250.0	-2.27	

Conclusion Future Work

- Mode matching is crucial to correctly identifying materials
- Euler angle rotations needed for complex material

Future work:

- Alternative characterization of material
- More samples
- Better characterization
- Mode Image Inversion

Questions

